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solving the capacitance problem. Numerical resilts have
been obtained and compared with previously published
results. The dccuracy and the relative efficiency of the
method have been demonstrated.
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Theory of Coupled Open Transmission Lines and lts Applications

MASANORI MATSUHARA anp NOBUAKI KUMAGAI, sENIOR MEMBER, IEEE

Abstract—A technique is presented which is applicable to any
uniform coupled open transmission lines such as coupled optical
integrated circuits. The proposed technique is as follows.

The electromagnetic fields of the wave propagating along a coupled
line is expréssed in terms of a linear combination of the fields associ-
ated with the individual lines, as a zero-order approximation. Insert-
ing this trial field description into the variational expression for the
propagation constant 3, and applying the well-known Rayleigh~Ritz’s
procedure, accurate solutions for the propagation constants of the
coupled lines are obtained.

This method can be applied generally to analyze coupled structures
in microwave, millimeter wave, and optical wave circuitry. As an
illustrative example, the coupling between two optical transmission
lines consisting of lens-like dielectric media has been analyzed by
means of the proposed technique.

I. INTRODUCTION

HE PROBLEM of coupling between open transmission
lines is interesting both from academic and practical
points of view in connection with the design and analysis
of optical integrated circuits and components (see Fig. 6).
Though several papers concerning the coupling of open
transmission lines have been reported [1]-[4], only the
special case where the coupling occurs between two
identical open transmission lines has been analyzed. To
the authors knowledge, a technique adequate to treat the
coupling between two different open transmission lines
has not been given before.
This paper presents a theory which can be applied to
two arbitrary coupled open transmission lines. The tech-
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nique proposed is based on the variational method.! The
procedure of the calculation is quite simple and straight-
forward as long as the electromagnetic fields associated
with individual transmission lines are already known. As .
an example of the application of the proposed theory, the
coupling between two dielectric lines consisting of lens-
like media has been analyzed.

II. VARIATIONAL EXPRESSION FOR THE
PROPAGATION CONSTANT

The magnetic field H of any uniform open transmission
line can be expressed as

H = (h+ ih.) explj(wt — B2)] (1)

where h, and h, are the transverse and longitudinal com-
ponents of the field, respectively, i, is a unit vector in the
longitudinal direction 2z, and 8 is the propagation constant.
The variational expression for the propagation constant 8
in the z direction of a lossless uniform transmission line
is given as?®

g = N/D 2)

! The theory described in the present paper was originally re-
ported at Radiation Science Research Committee on April 30,
1971, in Japanese. After preparing the manuscript of the present
paper, the authors found two related articles. One is Marcuse’s
work [5] where the coupling problem is treated with a perturbation
method, and the other is Snyder’s paper [6] in which the problem
is solved by a modal-expansion approach.

2 The variational expressions for the propagation constant of the
guided waves have been derived by several authors in different
forms. The expression (2) is a slight modification and generalization
of Kurokawa’s original one [7]. The variational expression (2) has
the advantage that it can be easily applied even though the material
constants involved change discontinuously in the transverse cross-
sectional surface of the guide.
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Fig. 1.
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The surface integral must be carried out over the whole
transverse cross section, while the line integral must be
evaluated along closed contours in Fig. 1 selected on op-

Contours along which the line integral is evaluated.

(4)

posite sides of the boundary across which the material

constants change discontinuously. n is a unit vector normal
to the boundary and directed as shown in Fig. 1

It should be mentioned, in this connection, that we
can assume any appropriate trial function A, as long as
both (1/p) V-uh; and i.- (n X h,) are continuous across
the boundary between the different media.

Since (2) is a variational expression, we can obtain a
more precise value of the propagation constant 8 from (2),
using the zero-order approximate expression for the field
component A,. ,

III. COUPLING THEORY BASED ON THE
VARIATIONAL METHOD

Let us consider the coupled system shown in Fig. 2
where the coupling oceurs between line 1 and line 2. As-
sume that the electromagnetic field of the individual line
is known. Let the transverse field components of line 1
and line 2 be h, and h, respectively, and the propagation
constants be B; and ., respectively. As long as 8: and 8.
are not markedly different, the transverse field com-
ponent h; of the coupled system is approximately repre-
sented in terms of the linear combination of ks and hs as

h; = mhy + mohep. (5)

The coefficients m,; and m, must be determined in such a
manner that (2) has a stationary value when (5) is

substituted into (2). Substituting (5) into (2), we get

2 2 2 2
g = Z ZNumzm]/Z Z Di,m,-m,-

i=1 j=1 =1 j=1

(6)

where
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Fig. 2. Coupled. system consisting of two arbitrary transmission
lines.
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1 ) ’
Dij = D,‘i =/ I:w2ﬂhzi’hzj - (V X hti)-(V X htj) ]dS
€ -

+f[( V><h“> (n X hy) |

+ (1 vV X htj)' (n X hn)] dl

i =1,2, j=12 (8)

The condition for which (6) has a stationary value, that
is, 962/9my = 0 and 4B%/0m, = 0, is given by
My Ny — 82Dy N. 22 — B2Dss

—7;1/—2 - Nll - BQD]I - - BZD12 ’

(9)

From the foregoing equations, 8 can be expressed as

1
2(DuDys — Dlzz)
+ {(DuNsp — DpNu)?

+ 4(DuNye — DpNy) (DN — DeNyp) 2], (10)

It can be seen from (10) that, in general, the coupled
system possesses two different propagation constants.
They correspond to symmetric and antisymmetric modes
of propagation.

Equation (10) can be approximated further to a simpler
form with the help of the following relations that. are

B = [(Dnsz + DypNy — 2Di:Ny)
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satisfied with sufficient accuracy in most practical cases:
Ny = 82Dy Nag = B*Das. (11)

Then (9) and (10) can be reduced to the more convenient
form

B=Bxc (12)
N 1/2 Fy 2) 1/2
o Go) @ vy w
2
where
Bo = 3(Br+ B2) (14)
61 - ,82
d = 15
Bl + ﬁ2 ( )
6 2)1/2
¢ = BF {1 + (ﬁ)} (16)
A= @6_6 (17)
F = %(DuDQz)_llz (D12 —_ %) . (18)
0

We designate the mode with the upper sign in the above
equations as mode a and the mode with the lower sign as
mode b. Also, we denote the propagation constants of
mode ¢ and mode b as 8, and 8, respectively, and abbre-
viate the ratios m,/m, for mode a as K, and for mode b as
Ks. Then the transverse field components H,, of mode a
and Hy of mode b can be represented as

Hm = A(Kahtl + hl?) eXp [](wt - ﬁaz)]
Hy = B(Kyha + hy) exp [j(wt - Bbz)]

where the constants A and B are determined by the
initial or excitation conditions. From the above two
equations, the transverse field components H of line 1
and H of line 2 can be obtained as

H, = htlI:AKa, €Xp (—jBz) + BK; exp (“jﬂbz)]

(19)
(20)

- exp (Jot) (21)
H,; = hp[A exp (—jBs2) + Bexp (—3j6) ] exp (jwt).
(22)

Let the normalized complex amplitudes of the waves
traveling along line 1 and line 2 be a;(2) and ay(z), respec-
tively. From (21) and (22), the complex amplitudes
a:(z) and a:(2) can be expressed in terms of the complex
amplitudes of the incoming waves a,(0) and a,(0) at the
beginning of the coupling portion z = 0 as follows:

ay (Z)
= exp (—7jBo)
—j(1 — A2 gin cz} I:al(O):,
cos cz + jAsin cz || ay(0) .

az(z)
[ cos cz — JA sin ¢z
(23)

—7(1 — A% gin cz
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Fig. 3. Power transfer between line 1 and line 2 due to the coupling.

Equation (23) provides the necessary information about
the coupling phenomenon between line 1 and line 2. For
example, let us consider the typical case where a,(0) = 1
and a,(0) = 0. In this case, (23) becomes

a:1(z) = (cos cz — jA sin cz) exp(—3jBo2)

a(z) = —j(1 — A% sin cz exp (—7Be2) (24)

from which we can evaluate the power exchange between
two coupled lines. The results are shown in Fig. 3. As we
can see from Fig. 3, the power fed into line 1 at 2z = 0 is
transferred completely to line 2 at the particular coupling
length

™

2= —
2¢

(25)

provided that A = 0 (that is, 8, = 8,).

IV. APPLICATIONS TO OPTICAL CIRCUITS

To illustrate the application of the theory, let us con-
sider the coupling between two lines (Selfoes) consisting
of lens-like dielectric media whose permittivity distribution
is

e=¢e(0){1 — g?(a>+ 1®) }

where ¢(0) is a maximum value of the permittivity on the
center axis of the line, and g is a characteristic parameter
determining the rate of change of permittivity variation
in the transverse directions z and y (see Fig. 4). For
simplicity, we assume the two dielectric lines are identical,
that is, the values of ¢(0) and g are the same for two lines.
The field of the fundamental mode of each line, polarized
in the y direction and propagating in the z direction, is
given as [8]

(26)

hy = exp {—4gk(a? 4+ %)}

where k = w[e(0)p ]2

The problem of the coupling between these two lines
can now easily be solved by applying the theory described
in the preceding section. Using the coordinate system
shown in Fig. 4, the permittivity distribution of the
coupled system is expressed as

{6(0)[1 — ¢*f{(z — D + 2} ],
(0)[1 — ?{ (= + D)2 + 2],

and the fields of line 1 and 2 are, respectively,

(27)

(z > 0)

(x <0) (28
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Fig. 5. Coupling coefficient between two Selfocs.
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Fig. 6. Examples of coupled optical transmission lmes and optlcal
integrated circuits. (a) Coupling between two Selfocs. (b) Coupling
between two circular dielectric lines. (¢) Coupling between two
rectangular dielectric lines. (d) Coupling between Selfoc and
circular dielectric line. (e) Coupling between Selfoc and rectangu-
lar dielectric line. (f) Coupling between circular and rectangular
dielectric lines.

hy = ih,y = i exp [ —3gk{(x — D)2 4+ y?}], for line 1
hip = iyhy = iyexp [—3gk{(x + D2 + 421}, for line 2.
' (29)

Substituting both' (28) and (29) into (7) and (8) yields
N and D;, which in turn determine 8 in accordance with
(10) or (12). The coupling coeflicient? ¢ can be expressed
approximately as

(gkl?)'* exp (—gkl’) (30)

c = _7/2
provided that gkiz >> 1.
Fig. 5 shows the couphng coefficient ¢ calculated from
(30). The parameter G@ = 47%¢?/k? in Fig. 5 represents the
amount of decrease of permittivity at the point which is
one wavelength away from the center axis. As we can
see from Fig. 5, the coupling coefficient decreases rapidly
with increasing separation 2! between the two lines.
Fig. 6 shows some typical examples of coupled systems
consisting of Selfoe, circular, and/or rectangular dielectric

3¢ is the “coupling coefficient” defined in Miller’s coupled mode

theory [9].
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waveguides. These are practically important in connection
with applications to optical integrated circuits such as
couplers, modulators, power dividers, launchers, etc., in
laser engineering.

We have examined, in this section, the couphng between
two identical Selfocs [Fig. 6 (a) ] as an illustrative example,
but any arbitrary coupl:d lines as shown in Fig. 6(b)~(f)
can of course be analyzed as well. In fact, the coupling
between two identical dielectric rectangular lines [Fig.
6(c) ] has been analyzed by means of the proposed method,
and the coupling coefficients have been easily derived
which coincide exactly with that obtained by Mareatili
[3, eq. (56) and (59) ] using another method.

V. CONCLUSION

A technique of analyzing the coupled open transmission
lines based on the variational method has been proposed.
This technique is widely applicable and the procedure of
calculation is quite straightforward. We can analyze the
widespread variety of any coupled structure in micro-
wave, millimeter wave, and optical wave circuitry by
means of the proposed method, as long as we know the
electromagnetic fields associated with individual line.

APPENDIX
ACCURACY OF THE PROPOSED METHOD

Let us examine the accuracy of the proposed method
with the aid of a simple example, a coupled system con-
sisting of two identical dielectric slab waveguides, shown
in Fig. 7. We evaluate the coupling between the lowest
TM modes of each guide.

The field expressions for these modes can easily be
derived- by a conventional method. Substituting these
field expressions into (7) and (8), we get Ny; and Dy,
Using N;; and D;, thus obtained, the propagation con-
stants 8, for mode a and 8, for mode b can be yielded either
from (10) or (12).

Let (8, — Ba) calculated from (10) be ABy, and (8, — Ba)
caleulated from (12) be AB; (=2¢), whereas (8, — B.)
evaluated by solving the rigorous characteristic equation
given by Bracey et al. [1] is AB,. By comparing AB; and
AB: with AB, numerically, we can estimate the accuracy of
the proposed method.

The results are shown in Fig. 8. K is a ratio of the permit-
tivity of the slab guide and that of the surrounding

‘medium, and k is a free-space propagation constant in the

y

Jz'jx

-l-d -1 t 1+d

line 2 line 1

Fig. 7. Coupling of two identical dielectric slab waveguides.
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Fig. 8. Accuracy of the proposed method in comparison with a
rigorous solution.

surrounding medium. The solid lines show (A8 — ABs)/ABo
while the broken lines show (AB: — ABy)/ABe, both as a
function of the normalized frequency (or the normalized
separation distance). As we can see from Fig. 8, the ac-
curacy of the proposed method is satisfactorily good. The
accuracy becomes excellent as the separation ! increases,
or the frequency becomes higher (in other words, the
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amount of the power transmitted within each guide
increases).
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An S-Band Radiometer Design with High Absolute Precision

WALTER N. HARDY, KENNETH W. GRAY, anp A. W. LOVE, MEMBER, IEEE

Abstract—A radiometer for the remote measurement of sea
surface temperature is described. Two requirements are necessary
for the attainment of an absolute accuracy of 1 or 2 K in molecular
temperature. Although the first is inappropriate for discussion here,
it is clear that corrections must be developed to account for per-
turbations caused by surface effects (roughness, foaming, and
salinity changes) and for atmospheric effects (absorption and
scattering). The second requirement, namely, the development of
an instrument capable not only of high relative accuracy (.e., reso-
lution) but also of high absolute precision, is the subject of this
paper.

The concepts underlying the design of an instrument capable of
an absolute accuracy of a few tenths degrees Kelvin in the meas-
urement of brightness temperature at S band are described. The
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role of the antenna is discussed and the importance of high ohmic
and beam efficiencies is stressed. The hardware itself is fully de-
scribed, along with an outline on the design of a unique cryogenically
cooled termination used to calibrate the whole radiometer, including
antenna.

Finally, some test results are presented that show that the design
goals for the instrument have been closely approached.

I. INTRODUCTION AND BACKGROUND

VER the past 25 years a wide variety of microwave
radiometer configurations of varying complexity and
sensitivity have been proposed. Although it is common
practice in the literature to state the theoretical and ex-
perimental temperature resolution of a radiometer, there
is almost a complete lack of information on the absolute
accuracy achieved. There is a potential need for a space-
borne microwave radiometer to measure remotely the sea
surface temperature, in which case it is necessary that the
radiometric temperature be determined with a resolution
of 0.1 K and with an absolute accuracy approaching
+0.1 K.
Antenna temperature resolutions of 0.1 K are routinely



