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solving the capacitance problem. Numerical results have

been obtained and compared with previously published

results. The accuracy and the relative efficiency of the

method have been demonstrated.
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Theory of Coupled Open Transmission Lines and Its Applications

MASANOR1 MATSUHARA AND NOBUAKI KUMAGAI, SENIOR MEMBER, IEEE

Abstract—A technique is presented which is applicable to any

uniform coupled open transmission lines such as coupled optical

integrated circuits, The proposed technique is as follows.

The electromagnetic fields of the wave propagating along a coupled

line is expressed in terms of a linear combination of the fields associ-

ated with the individual lines, as a zero-order appfoxirnation. Insert-

ing this trial field description into the variational expression for the

propagation constant & and applying the well-known Rayleigh-Ritz’s

procedure, accurate solutions for the propagation constants of the

coupled liries are obtained.

This method can be applied generally to analyze coupled structures

in microwave, millimeter wave, and optical wave circuitry. As ah

illustrative example, the cmtpling betwee”n two optical transmission

lines consisting of lens-like dielectric media has been analyzed by

means of the proposed technique.

I. INTRODUCTION

THE PROBLEM of coupling between open transmission

lines is interesting both from academic and practical

points of view in connection with the design and analysis

of optical integrated circuits and components (see Fig, 6),
Though several papers concerning the coupling of open

transmission lines have been reported [11-[4]Z only the

special case where the coupling occurs between two

identical open transmission lines has been analyzed. To

the authors knowledge, a technique adequate to treat the

coupling between two cliff erent open transmission lines

has not been given before.

This paper presents a theory which can be applied to

two arbitrary coupled open transmission lines. The tech-
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nique proposed is based on the variational method.1 The

procedure of the calculation is quite simple and straight-

forward as long as the electromagnetic fields associated

with individual transmission lines are already known. As

an example of the application of the proposed theory, the

coupling between two dielectric lines consisting of lens-

like media has been analyzed.

II. VARIATIONAL EXPRESSION FOR THE

PROPAGATION CONSTANT

The magnetic field H of any uniform open transmission

line can be expressed as

H = (h, + i.h,) exp[j(cd – @z)] (1)

where ht and ha are the transverse and longitudinal com-

ponents of the field, respectively, i, is a unit vector in the

longitudinal direction z, and@ is the propagation constant.

The variational expression for the propagation constant @

in the z direction of a Iossless uniform transmission line
is given as%

P2 = N/D (2)

I The theory described in the present paper was original~.y re-
ported at Radiation Science Research Committee on Aprd 30,
1971, in Japanese. After preparing the manuscript of the present
paper, the authors found two related articles. One is Marcuse’s
work [5] where the couphng problem is treated with a perturbation
method, and the other is Snyder’s paper [6] in which the problem
is solved by a modal-expansion approach.

z The variational expressions for the propagation constant of the
guided waves have been derived by several authors in different
forms. The expression (2) is a slight modification and generalization
of Kurokawa’s original one [7]. The variational expression (2) has
the advantage that it can be easily applied even though the material
constants involved change discontinuously in the transverse cross-
sectional surfaw of the guide.
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Fig. 1. Contours along which theline integral is evaluated.

N =/[e(u2pht - VX:V X h,)’ -co2&pht)2]dS

+2/ [(: V.wh,){n.(u’ph, - V X : V X h,)]] dl

(3)

+Zmvxht)”(nxhtddz‘4)
The surface integral must be carried out over the whole

transverse cross section, whale the line integral must be

evaluated along closed contours in Fig. 1 selected on op-

posite sides of the boundary across which the material

constants change discontinuously. n is a unit vector normal

to the boundary and dhected as shown in Fig. 1.

It should be mentioned, in this connection, that we

can assume any appropriate trial function h t as long as

both (l/~) v .pht and i.” (n X h,) are continuous across

the boundary between the different media.

Since (2) is a variational expression, we can obtain a

more precise value of the propagation constant o from (2),

using the zero-order approximate expression for the field

component ht.

III. COUPLING THEORY BASED ON THE

VARIATIONAL METHOD

Let us consider the coupled system shown in Fig. 2

where the coupling occurs between line 1 and line 2. As-

sume that the electromagnetic field of the individual line

is known. Let the transverse field components of line 1

and line 2 be htl and hta, respectively, and the propagation

constants be ~1 and &, respectively. As long as ill and i3A

are not markedly cliff erent, the transverse field com-

ponent h, of the coupled system is approximately repre-

sented in terms of the linear combination of htl and htt as

h, = mlht~ + m.2ht2. (5)

The coefficients m, and mA must be determined in such a
manner that (2) has a stationary value when (5) is

substituted into (2). Substituting (5) into (2), we get

where

Y

L
z

o Ilne 2

I!ne 1

0
x

Fig. 2. Coupled system consi~tin~ of two arbitrary transmission
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i=l,2, .j = 1, 2. (8)

The condition for which (6) has a stationary value, that

is, ty3z/8ml = O and W2/&w = O, is given by

ml N,t – B2Dn = _ N22 – /?2D22
— —_—

N,, – /32LA1 NIZ – f12D,, “
(9)

m2

‘From the foregoing equations, ~2 can be expressed as

1
P2 = — [( D,,N22 + D22N,, – 2D,2N,J

2 (D11D22 – D122)

* { (~11N22 — ~22N11) 2,

+ A(&N12 – D12NII) (D22N12 – D12N22) } ‘/2]. ( 10)

It can be seen from (10) that, in general, the coupled

system possesses two different propagation constants.

They correspond to symmetric and antisymmetric modes

of propagation.

Equation (10) can be approximated further to a simpler

form with the help of the following relations that are
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satisfied with sufficient accuracy in most practical cases:

NII = L?12D11 NZZ = /322D22. (11)

Then (9) and (10) can bereduced tothe more convenient

form

p= &&c (12)

2=W{1+(3}1’2(+’+A)’13)
where

60= 4(B1+B2) (14)

~=bb2

/% + /32

‘“”’’F{l+(w

‘=!!!
c

‘=’(D,lD22J-1’2@2-3

(15)

(16)

(17)

(18)

We designate the mode with the upper sign in the above

equations as mode a and the mode with the lower sign as

mode b. Also, we denote the propagation constants of

mode a and mode b as & and fib, respectively, and abbre-

viate the ratios mJm2 for mode a as K. and for mode b as

Kh. Then the transverse field components H,. of mode a

and Htb of mode b can be represented as

Htb = ~(&htl + h,,) (?Xp[j(d – pb~)] (20)

where the constants A and B are determined by the

initial or excitation conditions. From the above two

equations, the transverse field components Htl of line 1

and H~2 of line 2 can be obtained as

H,, = htl[AK. exp ( –j@..e) + BKb exp ( –j~,z) ]

. exp (@) (21)

Ht2 = ht,[A exp ( –j@az) + B exp ( ‘,j&?) ] exp ( jut).

(22)

Let the normalized complex amplitudes of the waves

traveling along line 1 and line 2 be al(z) and ~ (z), respec-

tively. From (21 ) and (22), the complex amplitudes

al(z) and az(z) can be expressed in terms of the complex

amplitudes of the incoming waves al(0) and m(0) at the

beginning of the coupling portion z = O as follows:

[1
al(z)

= exp ( –j~~)

.a2(z)

[

cos cz — ~A sin cz 1[ L–j(l – A2) 1/2sin cz al(0)
.

L-j(l - A2)12sin cz cos C.Z+jA sin cz ~ [Q(0)l

(23)
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Fig. 3. Power transfer between line 1 and line 2 due to the coupling.

Equation (23) provides the necessary information about

the coupling phenomenon between line 1 and line 2. ,For

example, let us consider the typical case where al(0) = 1

and aa(0) = O. In this case, (23) becomes

al(z) = (COScz – jA sin CZ) exp ( –j&z)

aZ (z) = –j( 1 – A2) 112sin cz exp ( –j&z) (24)

from which we can evaluate the power exchange between

two coupled lines. The results are shown in Fig. 3. As we

can see from Fig. 3, the power fed into line 1 at z = O is

transferred completely to line 2 at the particular coupling

length

(25)

provided that A = O (that is, Bl = 62).

IV. APPLICATIONS TO OPTICAL CIRCUITS

To illustrate the application of the theory, let us con-

sider the coupling between two lines (Selfocs) consisting

of lens-like dielectric media whose permittivit y distribution

is

E = 6(0){1 — gz(l? + ?J2)} (26)

where e(0) is a maximum value of the permittivity on the

center axis of the line, and g is a characteristic parameter

determining the rate of change of permittivity variation

in the transverse directions x and y (see Fig. 4). For

simplicity, we assume the two dielectric lines are identical,

that is, the values of e(0) and g are the same for two lines.

The field of the fundamental mode of each line, polarized

in the y direction and propagating in the z dhection, is

given as [8]

where k = COIC(0) p]112.

The problem of the coupling between these two lines

can now easily be solved by applying the theory described

in the preceding section. Using the coordinate system

shown in Fig. 4, the permittivity distribution of the

coupled system is expressed as

Ic(0)[l – g2{(x — 1)2+ ya}], (x> o)
~=

E(o)[l – gz{(z + Z)2 + yz}], (z < O) (28)

and the fields of line 1 and 2 are, respectively,
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Fig. 5. Coupling coefficient between two Selfocs.
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Fig. 6. Examples of coupled optical transmission lines and optical
integrated circuits. (a) Coupling between two Selfocs. (b) Coupling
between two circular dielectric lines. (c) Coupling between two
rectangular dielectric lines. (d) Coupling between Selfoc and
circular dielectric line. (e) Coupling bet ween Selfoc and rectangu-
lar dielectric line. (f) Coupling between circular and rectangular
dielectric lines.

h,l = iuhul = iyexp [–+gk{(z – t)’+ y’}], for line 1

h,, = ivhu, = iVexp [–lgk{ (x + 1)2 + g’]], for line 2.

(29)

Substituting both (28) and (29) into (7) and (8) yields

N,i and Dij, which in turn determine fl in accordance with

(10) or (12). The coupling coefficient’ c can be expressed

approximately as

c = 52 (gid2) 1/2exp ( – gM2) (30)

provided that gkl’ >>1.

Fig. 5 shows the coupling coefficient c calculated from

(30). The parameter G =’4#g2/lc2 in Fig. 5 represents the

amount of decrease of permittivit y at the point which is

one wavelength away from the center axis. As we can
see from Fig. 5, the coupling coefficient decreases rapidly

with increasing separation 21 between the two lines.

Fig. 6 shows some typical examples of coupled systems

consisting of Selfoc, circular, and/or rectangular dielectric

8 c is the “coupling coefficient” defined in Miller’s coupled mode
theory [9].
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waveguides. These are practically important in connection

with applications to optical integrated circuits such as

couplers, modulators, power dividers, launchers, etc., in

laser engineering.

we have examined, in this section, the coupling betvveen

two identical Selfocs [Fig. 6(a)] as an illustrative example,

but any arbitrary coupl d lines as shown in Fig. 6(b)-(f)

can of course be analyzed as well. In fact, the coupling

between two identical dielectric rectangular lines [Fig.

6(c) ] has been analyzed by means of the proposed method,

and the coupling coefficients have been easily derived

which coincide exactly with that obtained by Marcatili

[3, eq. (56) and (59)] using another method.

V. CONCLUSION

A technique of analyzing the coupled open transmission

lines based on the variational method has been proposed.

This technique is widely applicable and the procedure of

calculation is quite straightforward. We can analyze the

widespread variety of any coupled structure in micro-

wave, millimeter wave, and optical wave circuitry by

means of the proposed method, as long as we know the

electromagnetic fields associated with individual line.

APPENDIX

ACCURACY OF THE PROPOSED METHOD

Let us examine the accuracy of the proposed method

with the aid of a simple example, a coupled system con-

sisting of two identical dielectric slab waveguides, shown

in Fig. 7. We evaluate the coupling between the lowest

TM modes of each guide.

The field expressions for these modes can easily be

derived by a conventional method. Substituting these

field expressions into (7) and (8), we get N~i and Dii.

Using N~j and Di, thus obtained, the propagation con-

stants & for mode a and ~b for mode b can be yielded either

from (10) or (12).

Let (~b – Pa) calculated from (10) be A&, and (6* -- I%)

calculated from (12) be Ai3z ( = 2c), whereas (f$ -- B.)

evaluated by solving the rigorous characteristic equation

given by Bracey et al. [1] is APO. By comparing A@T.and

A& with APOnumerically, we can estimate the accuracy of

the proposed method.

The results are shown in Fig. 8. K is a ratio of the pcrmit-

tivit y of the slab guide and that of the surrounding

medium, and k is a free-space propagation constant in the

Fig. 7. Coupling of two identical dielectric slab wavegukies.
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Fig. 8. Accuracy of the proposed method in comparison with a
rigorous solution.

surrounding medium. The solid lines show (A@l — A@O) /A(30

while the broken lines show (A& — A~o) /Afro, both as a

function of the normalized frequency (or the normalized

separation distance). As we can see from Fig. 8, the ac-

curacy of the proposed method is satisfactorily good. The

accuracy becomes excellent as the separation 1 increases,

or the frequency becomes higher (in other words. the

amount of the power transmitted within each guide

increases).
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An ~-Band Radiometer Design with High Absolute Precision

WALTER N. HARDY, KENNETH W. GRAY, AND A. W. LOVE, MEMBER, IEEE

Abstracf—A radiometer for the remote measurement of sea

surface temperature is described. Two requirements are necessary

for the attainment of an absolute accuracy of 1 or 2 K in molecular

temperature. Although the first is inappropriate for discussion here,

it is clear that corrections must be developed to account for per-

turbations caused by surface effects (roughness, foaming, and

salinity changes) and for atmospheric effects (absorption and

scattering). The second requirement, namely, the development of

an instrument capable not only of high relative accuracy (i.e., reso-

lution) but also of high absolute precision, is the subject of this

paper.
The concepts underlying the design of an instrument capable of

an absolute accuracy of a few tenths degrees Kelvin in the meas-

urement of brightness temperature at S band are described. The
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role of the antenna is discussed and the importance of high ohmic

and beam efficiencies is stressed. The hardware itself is fully de-

scribed, along with an outline on the design of a unique cryogenically

cooled termination used to calibrate the whole radiometer, including

antema.

Finally, some test results are presented that show that the design

goals for the instrument have been closely approached.

I. INTRODUCTION AND BACKGROUND

oVER the past 25 years a wide variety of microwave
radiometer configurations of varying complexity and

sensitivity have been proposed. Although it is common

practice in the literature to state the theoretical and ex-

perimental temperature resolution of a radiometer, there

is almost a complete lack of information on the absolute

accuracy achieved. There is a potential need for a space-

borne microwave radiometer to measure remotely the sea

surface temperature, in which case it is necessary that the

radiometric temperature be determined with a resolution

of 0.1 K and with an absolute accuracy approaching

+0.1 K.

Antenna temperature resolutions of 0.1 K are routinely


